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A denotational model is presented for the language POOL, a parallel object-
oriented language. It is a syntactically simplified version of POOL-T, a language
that is actually used to write programs for a parallel machine. The most important
aspect of this language is that it describes a system as a collection of communicat-
ing objects that all have internal activities which are executed in parallel. To
describe the semantics of this language we construct a mathematical domain of pro-
cesses. This domain is obtained as a solution of a reflexive domain equation over
a category of complete metric spaces. A new technique is developed to solve a wide
class of such equations, including function space constructions. The desired domain
is obtained as the fixed point of a contracting functor implicit in the equation. The
domain is sufficiently rich to allow a fully compositional definition of the language
constructs in POOL, including concepts such as object creation and method
invocation by messages. The semantic equations give a meaning to each syntactic
construct depending on the POOL object executing the construct, the environment
constituted by the declarations, and a continuation, representing the actions to be
performed after the execution of the current construct. After the process represent-
ing the execution of an entire program is constructed, a yield function can extract
the set of possible execution sequences from it. A preliminary discussion is provided
on how to deal with fairness. Full mathematical details are supplied, with the excep-
tion of the general domain construction, which is described elsewhere.  © 1989
Academic Press, Inc.

1. INTRODUCTION

In this paper we give a formal semantics of a language called POOL
(parallel object-oriented language). It is a syntactically simplified version of
the language POOL-T, which is defined in (America, 1985) and for which
(America, 1986, 1987) give an account of the design considerations.

* This work was carried out in the context of ESPRIT Project 415: Parallel Architectures
and Languages for AIP—a VLSI-directed approach.
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POOL-T was designed in subproject A of ESPRIT project 415 with the
purpose of programming a highly parallel machine which is also being
developed in this project (see Odijk, 1987 for an overview). The language
provides all the facilities needed to program reasonably large parallel
systems and many small and several large applications have been written
in it.

The language POOL for which we shall give a formal semantics is
described in detail in Section 3. In this language, a system is viewed as a
collection of objects. These are dynamic entities containing data (stored in
variables) and methods (kinds of procedures). Objects can be created
dynamically during the execution of a program and each of them has an
internal activity (its body) in which it can execute expressions and
statements. While inside an object everything proceeds sequentially, the
concurrent execution of the bodies of all the objects can give rise to a large
amount of parallelism. Objects can interact by sending messages to each
other. Acceptance of a message gives rise to a rendezvous between sender
and receiver, during which an appropriate method is executed.

The relationship between POOL (as described in Section 3) and POOL-T
is such that there is a straightforward translation from valid POOL-T
programs to valid POOL programs. This translation merely performs some
syntactic simplifications and it omits some context information (POOL-T
is a statically typed language, POOL is not). At no point does this transla-
tion replace any semantic primitive by another one. The sole reason for
using two languages and translating between them is that POOL-T is a
practical programming language, where readability, among others, is much
more important than syntactic simplicity. In order not to overload the
present paper, we shall not describe POOL-T and the above translation,
but take as a starting point the language POOL as described in Section 3.

After having defined an operational semantics for POOL in (America et
al., 1986), in this paper we set out to develop a denotational semantics. In
general, denotational semantics assigns to every construct in the language
a meaning, which is a value from a suitably chosen mathematical domain.
The most important principle in denotational semantics is compositionality:
The meaning of a composite construct is determined solely on the basis of
the meanings of its components, which means that the actual form of these
components is irrelevant.

An important choice we have made is to use the mathematical
framework of complete metric spaces for our semantic description. In this
we follow and generalize the approach of (De Bakker and Zucker, 1982).
(For other applications of this type of semantic framework see De Bakker
et al., 1986.) First, we construct a suitable domain P of processes, which is
a set of mathematical objects that will be used as meanings. It will satisfy
a reflexive domain equation, which will be solved by dgriving from it a
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functor on a certain category of complete metric spaces and then construct-
ing a fixed point for this functor. The mathematical techniques to do this
are sketched in Section 2 and presented in detail in (America and Rutten,
1988). They are not necessary for an understanding of the rest of the paper.

After having constructed the domain P, we want to define a mapping
from the set of POOL programs (also called units) to P. Before we assign
a semantic value to the unit as a whole, we first define the semantics of
statements and expressions. This semantics will be given by functions of the
type:

[---1x: Exp— Env— Obj— Conty— P

[---Tg: Stat > Env— Obj — Cont ¢ — P,

where
Cont,; = Obj— P,

Contg=P.

We give the formal description of the type of these semantic functions here
because we want to stress three of their characteristics: the use of environ-
ments, objects, and continuations.

The environments (elements of the set Env) are used to store the
meanings of declarations (of classes and methods). With the help of [ --- ],
and [ --- ] we can define for each unit U a suitable environment y,,, which
contains the meanings of the classes and methods as they are defined in U.
It will be constructed as the unique fixed point of a contracting operator
on the complete metric space of environments. The semantic domain Obj
stands for the set of object names. Its appearance in the defining equations
reflects the fact that in POOL each expression or statement is evaluated by
a certain object. Finally, a continuation will be given as an argument to the
semantic functions. This describes what will happen afrer the execution of
the current expression or statement. As the continuation of an expression
generally depends upon the result of this expression (an object name), its
type is Obj — P, whereas the type of continuations of statements is simply
P. This use of continuations makes it possible to define the semantics,
especially of object creation, in a convenient and concise way. (For more
examples of the use of continuations in semantics, see (De Bruin, 1986) and
(Gordon, 1979).)

The denotational semantics proper for POOL is presented in Section 4.
It first discusses the details of the process domain P. Next, it defines an
auxiliary operator for parallel composition, which is used, e.g., in the equa-
tion for the creation of a new object. (POOL itself does not have a syntac-
tic operator for parallel execution: parallelism occurs implicitly as a conse-
quence of object creation.) Then the core of the semantic definitions, in
terms of the various semantic equations for the respective classes of expres-
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sions and statements, is displayed. Once the reader has understood (or
taken for granted) the underlying mathematical foundations he will
appreciate, we hope, that the framework allows a concise, rigorous, and
compositional (the touchstone of a denotational model) definition of
intricate notions such as the creation of a new object or the passing of
messages leading to the invocation of the appropriate method. Section 4
then continues with the discussion of the standard process pgr, which
describes the standard objects (integers, booleans, and nil) of the language.
Next, the definition of the environment y, corresponding to a unit U is
given and used to define a process p,,. In a last step we show how the set
of all possible sequences of computation steps can be obtained from the
process resulting from the parallel composition of p,, and pgr.

In Section 5 the semantic model is adapted to provide the possibility to
formulate requirements that distinguish between fair and unfair executions
of the program. The ideas in this section are not in their final form and will
probably be developed further in subsequent work. Section 6 presents some
conclusions and gives some directions for further research.

As related work concerning the semantics of POOL, we first refer to
(America et al., 1986), where we describe the semantics in an operational
way, using a transition system in the style of (Hennessy and Plotkin, 1979).
In (Vaandrager, 1986), the semantics of the language is described by trans-
lating it into process algebra and using the several kinds of semantics that
had already been developed for the latter (see, e.g., Bergstra and Klop,
1984). In order to do this, some extra process algebra operators are intro-
duced. The advantage of this approach is that it uses an existing framework
which admits algebraic calculations with meanings of programs, and
furthermore that it can deal with fairness in a natural way. However, due
to the extra translation step, the meaning of an individual construct is quite
hard to understand.

Semantic treatments of parallel object-oriented languages in general are
scarce; we only know (Clinger, 1981), which gives a detailed mathematical
model for an actor language. This is done by defining a set of so-called
augmented actor event diagrams, each of which is a fairly complicated
structure representing (the beginning of) a single computation. In order to
deal with nondeterminism, a novel power domain construction is used.
This technique deals very well with fairness, but the event diagrams seem
a rather ad hoc construction.

As to the material in Section 2, there is a vast amount of literature on
order-theoretic domain theory (see, for instance, (Gierz et al., 1980)). Our
approach, in which a category of metric spaces and (generalizations of)
Banach’s theorem are central, may be an attractive alternative that can be
used in a situation where the contractivity of the various functions encoun-
tered is a natural phenomenon.
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2. METRIC SPACES AND DOMAIN EQUATIONS

In this section we first collect some definitions and properties concerning
metric spaces. Then we show how the well-known direct limit construction
can be used as a means to produce a solution of a recursive domain equa-
tion in a category of complete metric spaces.

It is not absolutely necessary to read this section in order to understand
the rest of this paper. It mainly gives a mathematical justification for the
constructions used in Sections 4 and 5.

2.1. Metric Spaces

DEerINITION 2.1 (Metric space). A metric space is a pair (M, d) with M
a non-empty set and d a mapping d: M x M — [0, 1] (a metric or distance),
which satisfies the properties:
(a) Yx,yeM[d(x,y)=0< x=y]
(b) Vx,yeM[d(x,y)=d(y, x)]
(c) Vx,p,zeM[d(x,y)<d(x,z)+d(z,y)].
We call (M, d) an ultra-metric space if the following stronger version of
property (c) is satisfied:
(¢') Vx,y,ze M[d(x, y) < max{d(x, z), d(z, y) } ].

Remark. In our definition the distance between two elements of a
metric space is always bounded by 1.

EXAMPLE. Let 4 be an arbitrary set. The discrete metric d, on A is
defined as follows: Let x, ye A4, then

0 if x=y

dA(x’y)z{l lf X-’/éy

Now (4, d,) is a metric, even an ultra-metric, space.

DEFINITION 2.2. Let (M, d) be a metric space, let (x,);, be a sequence
in M.

(a) We say that (x;), is a Cauchy sequence whenever we have:

Ve>03INeNVn, m>N [d(x,, x,,) < el

.(b) Let xeM. We say that (x,), converges to x (denoted by
x=lim;_, . x;) and call x the /imit of (x,;); whenever we have

Ve>03INeNVn>N [d(x, x,) <e].
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Such a sequence we call convergent.

(c) The metric space (M, d) is called complete whenever each Cauchy
sequence converges to an element of M.

(d) A subset X of a complete metric space (M, d) is called closed
whenever each Cauchy sequence in X converges to an element of X.

DEerINITION 2.3, Let (M, d,), (M,, d,) be metric spaces.

(a) We say that (M, d,) and (M,, d,) are isometric if there exists a
bijection f: M, — M, such that: Vx, ye M,[d-(f(x), f(y))=d,(x,y)]. We
then write M, =~ M,. When f is not a bijection (but only an injection), we
call it an isometric embedding.

(b) Let f: M,— M, be a function. We call f continuous whenever for
each sequence (x,); with limit x in M, we have that lim,_ _ f(x;)=f(x).

(c) Let e=0. With M, »* M, we denote the set of functions f from
M, to M,, that satisfy the following property: Vx, ye M,[d,(f(x), f(¥)) <
e-d,(x,y)]. Functions f in M,—-'M, we call non-distance-increasing
(NDI), functions fin M, =% M, with 0<e< 1, we call contracting.

ProPOSITION 2.4. Let (M,,d,), (M,,d,) be metric spaces. For every
e=0and fe M, —-° M, we have: [ is continuous.

THEOREM 2.5 (Banach’s fixed point theorem). Let (M, d) be a complete
metric space and - M — M a contracting function. Then there exists an
x €M such that the following holds:

(1) f(x)=x(x is a fixed point of f),

(2) VyeM [f(y)=y=yp=x] (x is unique),

(3) Vxoe M[lim, ., f"(xo)=x] where f"*'(xo)=f(f"(x0)) and
fo(xo) =Xp-

Remark. This theorem will be the main mathematical tool that we shall
use: Contracting functions and their unique fixed points play an important
role throughout this paper.

DeFmNiTION 2.6.  Let (M, d), (M,, d,),.., (M,, d,) be metric spaces.

(a) With M, — M, we denote the set of all functions from M, to M,.
We define a metric d,. on M, — M, as follows: For every f|, f,eM, > M,
we put

de(f1,f2) = sup {dZ(fl(x)afZ(x))}‘

xe M

This supremum always exists since the codomain of our metrics is always
[0,1]. For ¢>0 the set M, —»“M, is a subset of M, — M,, and a metric
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on M, —* M, can be obtained by taking the restriction of the correspond-
ing dp.

(b) With M, U---O M, we denote the disjoint union of M, .., M,
which can be defined as {1} x M, U--- U {n} x M,. We define a metric d,,
on M, O---O M, as follows: For every x, ye M| O ---O M

dL/(xa ,V) = {

di(x,y) il x,ye{jlxM;, 1<j<n,
1 otherwise.
If no confusion is possible we shall often write U rather than O.
(c) We define a metric d, on the Cartesian product M, x --- x M, by
the clause: For every (x,, .., X,), (}1, v yo)EM X -~ x M,
dp((xh ey xn )’ (yl ERAE] yn)) = maxi{di(xi’ yi) }

(d) Let Z(M)={X:XSM A X is closed}. We define a metric dy
on #,(M), called the Hausdorff distance: For every X, Ye 2(M),

dy(X, Y)=max {sup {d(x, Y)}, sup {d(y, X)}} ,

xeX VyeyY
where d(x, Z)=inf., ,{d(x, z)} for every Z= M, xe M. (We use the
convention that sup (=0 and inf @ =1.)
(e) For any real number ¢ with ¢e [0, 1] we define
d,((M, d))=(M, d"),

where d'(x, y)=¢-d(x, y), for every x and y in M.

PropPOSITION 2.7. Let (M, d), (M, d,),...(M,,d,), dp, d,, dp, and d,, be
as in Definition 2.6 and suppose that (M, d), (M, d\),...(M,,d,) are
complete. We have that

(@) (My—>M,,dp), (M, >"M,, d),
(b) (M, O---OM,,dy),

(¢) (Myx---xM,,dp),

(d) (Zu(M),dy),

(e) id((M,d)),

are complete metric spaces. If (M,d) and (M,, d;) are all ultra-metric
spaces, then so are these composed spaces. (Strictly speaking, for the com-
pleteness of M, — M, and M| —° M, we do not need the completeness of
M . The same holds for the ultra-metric property.)

Whenever in the sequel we write M, > M, M, —»*M,, M, O --- OM,,
Mx .- xM, #(M), or id(M), we mean the metric space with the
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metric defined above. The proofs of Proposition 2.7(a), (b), (c), and (e) are
straightforward. Part (d) is more involved. It can be proved with the help
of the following characterization of the completeness of (#,(M), dy).

PROPOSITION 2.8. Let (Z(M), dy;) be as in Definition 2.6. Let (X,), be
a Cauchy sequence in P(M). We have
lim X,={lim x;|x;eX,, (x;);a Cauchy sequence in M }.
Proofs of Propositions 2.7(d) and 2.8 can be found in (for instance)

(Dugundji, 1966; Engelking, 1977). Proposition 2.8 is due to Hahn (1948).
The proofs are also repeated in (De Bakker and Zucker, 1982).

2.2. Solving Reflexive Domain Equations

As a mathematical domain for our denotational semantics we shall use
a complete metric space satisfying a so-called reflexive domain equation of
the form

P=F(P).

Here F(P) is an expression composed of P and some given fixed spaces by
applying one or more of the constructions introduced in Definition 2.6. A
few examples are:

P=Auid,(BxP) (1)
P=AuZy(Bxid,(P)) (2)
P>~ AU (B~ id ,(P)), (3)

where 4 and B are given fixed complete metric spaces. De Bakker and
Zucker (1982) have first described how to solve these equations in a metric
setting (see also De Bakker er al,, 1986 for many examples).

Roughly, their approach amounts to the following: In order to solve
P = F(P) they define a sequence of complete metric spaces (P,), by Po=4
and P,,,=F(P,), for n>0, such that P,< P, < ---. Then they take the
metric completion of the union of these spaces P,, say P, and show
P = F(P). In this way they are able to solve Egs. (1)}-(3) above.

For our denotational semantics we shall have to solve a domain
equation of yet another type, namely,

Px=Auid,,(P—"'G(P)), (4)

in which P occurs at the left side of a function space arrow, and G(P) is
an expression possibly containing P. Here, the method of (De Bakker and
Zucker, 1982) fails, since, with F as in (4), it is not always the case that
P, F(P,).
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In (America and Rutten, 1988) the approach is generalized in order to
overcome this problem. The family of complete metric spaces is made into
a category ¥ by providing some additional structure. (For an extensive
introduction to category theory we refer the reader to (Mac Lane, 1971).)
Then the expression F is interpreted as a functor F: % — % which is (in a
sense) contracting. It is proved that a generalized version of Banach’s
theorem holds, ie., that contracting functors have a unique fixed point (up
to isometry). Such a fixed point, satisfying P = F(P), is a solution of the
domain equation.

We shall now give a quick overview of these results, omitting many
details and all proofs. For a full treatment we refer the reader to (America
and Rutten, 1988).

DrrFINITION 2.9 (Category of complete metric spaces). Let 4 denote the
category that has complete metric spaces for its objects. The arrows 1 in %
are defined as follows: Let M,, M, be complete metric spaces. Then
M, —'M, denotes a pair of maps M, M,, satisfying the following
properties:

(a) iis an isometric embedding,
(b) jis non-distance-increasing (NDI),
(c) Jjoi=idy,.

(We sometimes write (i, j) for 1.) Composition of the arrows is defined in
the obvious way.

We can consider M, as an approximation of M,: In a sense, the set M,
contains more information than M,, because M, can be isometrically
embedded into M,. Elements in M, are approximated by elements in M.
For an element m, e M, its (best) approximation in M, is given by j(m,).
Clause (c) states that M, is a consistent extension of M.

DEeFmNITION 2.10. For every arrow M, —»'M, in € with 1= {i, j) we
define

o) = sz—. Mz(iojv isz) (= sup {sz(in(mz), mz)} ).
nmye M
This number can be regarded as a measure of the quality with which M,
is approximated by M,: the smaller 5(1), the better M, is approximated
by M,.
Increasing sequences of metric spaces are generalized in the following

DerFINITION 2.11 (Converging tower). (a) We call a sequence (D,, 1,,),
of complete metric spaces and arrows a rower whenever we have that
VHEN [Dnﬁ‘nDni—le(g]'

(b) The sequence (D,,1,), is called a converging tower when further-
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more the following condition is satisfied: Ve>0INeNVm>nz=N
[3(1,) <e], where 1, =1,, (o ---01,: D, —D,,.

ExAMPLE. A special case of a converging tower is a tower (D,,1,),
satisfying, for some ¢ with 0<e< 1,

VneN [6(1,,)<e-0(1,)].

(Please note that

5(1nm)<5(ln)+ +5(lm—-l)<8"'5(10)+ +8m_l 5(10)<1i85(10)>

We shall now generalize the technique of forming the metric completion
of the union of an increasing sequence of metric spaces by proving that, in
%, every converging tower has an initial cone. The construction of such an
initial cone for a given tower is called the direct limit construction. Before

we treat this direct limit construction, we first give the definition of a cone
and an initial cone.

DerFINITION 2.12 (Cone). Let (D, 1,), be a tower. Let D be a complete
metric space and (y,), a sequence of arrows. We call (D, (y,),) a cone for
(D,, 1,), whenever the following condition holds:

VneN[D,->"Deb Ay, =79,,1°1,]

DEerFINITION 2.13 (Initial cone). A cone (D, (y,),) for a tower (D, 1,), is
called initial whenever for every other cone (D', (y,),) for (D,,1,), there
exists a unique arrow 1: D — D’ in ¥ such that:

VneN [1oy,=y,]

DerFINITION 2.14  (Direct limit construction). Let (D,,1,),, With
t,=<i,, j,», be a converging tower. The direct limit of (D,,1,), is a cone
(D, (7,),), with y,, = {g,, h,>, that is defined as follows:

D= {(xn)nlvn>0[xneDn /\j,,(x,,+1)=x”]}

is equipped with a metric d: D x D — [0, 1] defined by: d((x,),, (y,.),) =
sup{dp, (x,, y,)}, for all (x,), and (y,),€D. g,: D,— D is defined by
g.(x) = (x,)x, where

Jin(X) if k<n
Xpe=4{X if k=n
[u(x) if k>n;

h,: D — D, is defined by h,((x;);)=x,.
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LEMMA 2.15. The direct limit of a converging tower (as in Defini-
tion 2.14) is an initial cone for that tower.

As a category-theoretic equivalent of a contracting function on a metric
space, we have the following notion of a contracting functor on €.

DEerINITION 2.16 (Contracting functor). We call a functor F: 4 -4
contracting whenever the following holds: There exists an ¢, with 0 <e <1,
such that, for all D —»' E€ &,

S(F(1))<e-o(r).

A contracting function on a complete metric space is continuous, so it
preserves Cauchy sequences and their limits. Similarly, a contracting
functor preserves converging towers and their initial cones:

LemMmA 2.17. Let F: 6 — % be a contracting functor, let (D,,1,), be a
converging tower with an initial cone (D, (y,),). Then (F(D,), F(1,)), is again
a converging tower with (F(D), (F(y,)),) as an initial cone.

THEOREM 2.18 (Fixed-point theorem). Let F be a contracting functor
F:%$—% and let Dy—" F(D,)€%. Let the tower (D,,1,), be defined by
D,,,=FD,) and,,,=F(@,) for all n20. This tower is converging, so it
has a direct limit (D, (y,),). We have: D= F(D).

Remark. In (America and Rutten, 1988) it is shown that contracting
functors that are, moreover, contracting on all hom-sets (the sets of arrows
in % between any two given complete metric spaces) have unigue fixed
points (up to isometry). It is also possible to impose certain restrictions
upon the category % such that every contracting functor on % has a unique
fixed point.

Let us now indicate how this theorem can be used to solve Egs. (1)-(4)
above. We define

Fi(P)=Auvid,(BxP) (1)
Fy(P)=AUZy(Bxid ,(P)) (2)
Fy(P)=Au (B~ id,5(P)) (3)

If the expression G(P) in Eq. (4) is, for example, equal to P, then we define
F, by

FyP)=Avid (P—'P). (4)

(Please note that the definitions of these functors specify, for each metric
space (P, dp), the metric on F(P) implicitly (see Definition 2.6).) Now it is
easily verified that F, F,, F;, and F, are contracting functors on %.
Intuitively, this is a consequence of the fact that in the definitions above
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each occurrence of P is preceded by a factor id| ;. Thus these functors have
a fixed point, according to Theorem 2.18, which is a solution for the
corresponding equation.

Remarks. (1) In (America and Rutten, 1988) it is shown that functors
like F, through F, are also contracting on hom-sets, which guarantees that
they have unique fixed points (up to isometry).

(2) The results above hold for complete wltra-metric spaces too,
which can be easily verified. The domain we shall use for our denotational
semantics is an ultra-metric space.

3. THE LANGUAGE POOL
3.1. An Informal Introduction to the Language

The language POOL makes use of the principles of object-oriented
programming in order to give structure to parallel systems. Object-oriented
programming (of which the language Smalltalk-80, Goldberg and Robson,
1983, is a representative example) offers a way to structure large systems.
Originally it was only used in sequential systems, but it offers excellent
possibilities for a very advantageous integration with parallelism. (This was
already proposed in Hewitt, 1977, using an approach quite different from
ours.)

A POOL program describes the behaviour of a whole system in terms of
its constituents, objects. Objects contain some internal data, and some
procedures that act on these data (these are called merhods in the object-
oriented jargon). Objects are entities of a dynamic nature: they can be
created dynamically, their internal data can be modified, and they have an
internal activity of their own. At the same time they are units of protection:
the internal data of one object are not directly accessible for other objects.

An object uses variables (more specifically: instance variables) to store its
internal data. Each variable can contain the name of an object (another
object, or, possibly, the object under consideration itself). An assignment
to a variable can make it refer to a different object than before. The
variables of one object cannot be accessed directly by other objects. They
can only be read and changed by the object itself.

Objects can interact by sending messages to each other. A message is a
request for the receiver to execute a certain method. Messages are sent and
received explicitly. In sending a message, the sender mentions the destina-
tion object, the method to be executed, and possibly some parameters
(which are again object names) to be passed to this method. After this its
activity is suspended. The receiver can specify the set of methods that will
be accepted, but it can place no restrictions on the identity of the sender
or on the parameters of messages. If a message arrives specifying an
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appropriate method, the method is executed with the parameters contained
in the message. Upon termination, this method delivers a result (an object
name), which is returned to the sender of the message. The latter then
resumes its own execution. Note that this form of communication strongly
resembles the rendezvous mechanism of Ada (ANSI, 1983).

A method can access the variables of the object that executes it (the
receiver of a message). Furthermore it can have some temporary variables,
which exist only during the execution of the method. In addition to
answering a message, an object can execute a method of its own simply by
calling it. Because of this, and because answering a message within a
method is also allowed, recursive invocations of methods are possible. Each
of these invocations has its own set of parameters and temporary variables.

When an object is created, a local activity is started: the object’s body.
When several objects have been created, their bodies execute in parallel.
This is the way parallelism is introduced into the language. Synchroniza-
tion and communication takes place by sending messages, as described
above.

Objects are grouped into classes. All objects in one class (the instances
of that class) use the same names for their variables, they have the same
methods for answering messages, and they execute the same body. In creat-
ing an object, only its desired class must be specified. In this way a class
serves as a blueprint for the creation of its instances.

There are a few standard classes predefined in the language. In this
semantic description we will only incorporate the classes Boolean and
Integer. On these objects the usual operations can be performed, but they
must be formulated by sending messages. For example, the addition 2 +4
is indicated by the expression 2!add(4), sending a message with method
name “add” and parameter 4 to the object 2.

There is a special standard object, nil, which can be considered to be an
element of every class. Upon the creation of a new object, its instance
variables are initialized to nil, and when a method is invoked, its temporary
variables are also initialized to nil. If a message is sent to this object, an
error occurs. In general, whenever a run-time error occurs, the whole
system will halt immediately.

At this point it is useful to emphasize the distinction between an object
and its name. Objects are intuitive entities as described above. In this paper
there will appear no mathematical construction that directly models a
single object with all its dynamic properties (although it would be interest-
ing to see a semantics which does this). Object names, on the other hand,
are modeled explicitly as elements of some abstract set Obj. Object names
are only references to objects. On its own, an object name gives little infor-
mation about the object it refers to. In fact, object names are just sufficient
to distinguish the individual objects from each other. Note that variables
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and parameters contain object names, and that expressions result in object
names, not objects. Only for standard objects: integers, booleans, and nil,
it does not seem to make sense to distinguish between an object and its
name. However, even for these objects a separate description of their
behaviour is necessary (see Section 4.4). If in the sequel we speak, for

example, of “the object o,” we hope that the reader understands that the
object with name o is meant.

3.2. Syntax of POOL

In this section the (abstract) syntax of the language POOL is described.
We assume that the following sets of syntactic elements are given:

1Var (instance variables) with typical element x,
TVar (temporary variables) with typical element u,
CName (class names) with typical element C,
MName (method names) with typical element m.

We define the set SObj of standard objects, with typical element ¢, by
SObj=Z v {1, ff} v {nil }.
(Z is the set of all integers.) Note that for standard objects, we do not

distinguish between object names and the objects themselves.
We now define the set Exp of expressions, with typical element e:

el=x
| u
| elm(e,, ..., e,)
[ m(ey, ..., e,)
| new(C)
e =e,
| s;e
| self
| ¢
The set Stat of statements, with typical elements s, ...
Sii=Xxee
|ue—e
| answer V (V= MName, V # &)
| e
[ 5158,

| if e then s, else s, fi
| do e then s od
|selg,or---org,les
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The set GCom of guarded commands, with typical elements g, ...:
g ::=e¢ answer } then s (V= MName).

(Note that V= ¢ is allowed.)
The set Unit of units, with typical elements U, ...:

U:=<(C,<=d,..C,<=d,> (n=1).
The set ClassDef of class definitions, with typical elements 4, ...:
d = <(’nl e )u] s ey M, <= lun)aS>

And finally the set MethDef of method definitions, with typical elements
U
o= (uy, e u,),e0.

3.2.1. Informal Explanation

Expressions. An instance variable or a temporary variable used as an
expression will yield as its value the object name that is currently stored in
that variable.

The next kind of expression is a send expression. Here, e is the destina-
tion object, to which the message will be sent, m is the method to be
invoked, and ¢, through e, are the parameters. When a send expression is
evaluated, first the destination expression is evaluated, then the parameters
are evaluated from left to right and then the message is sent to the destina-
tion object. When this object answers the message, the corresponding
method is executed, that is, the formal parameters are initialized to the
objects names in the message, the temporary variables are initialized to #il,
and the expression in the method definition is evaluated. The value which
results from this evaluation is sent back to the sender of the message and
this will be the value of the send expression.

A method call simply means that the corresponding method is executed
(after the evaluation of the parameters from left to right). The result of this
execution will be the valu€ of the method call.

A new-expression indicates that a new object is to be created, an instance
of the indicated class. The instance variables of this object are initialized to
nil and the body starts executing in parallel with all other objects in the
system. The result of the new-expression is (the name of ) this newly created
object.

The next type of expression checks whether ¢, and e, result in the same
object. If so, 11 is returned, otherwise ff.

An expression may also be preceded by a statement. In this case the
statement is executed before the expression is evaluated.
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The expression self always results in the name of the object that is
executing this expression.

The evaluation of a standard object ¢ results in that object itself. For
instance, the value of the expression 23 will be the natural number 23.

Statements. The first two kinds of statements are assignments, to an
instance variable and to a temporary variable, respectively. An assignment
is executed by first evaluating the expression on the right, and then making
the variable on the left refer to the resulting object.

The next kind of statement is an answer statement. This indicates that a
message 1S to be answered. The object executing the answer statement waits
until a message arrives with a method name that is contained in the set V.
Then it executes the method (after initializing the formal parameters and
temporary variables). The result of the method is sent back to the sender
of the message, and the answer statement terminates.

Next it is indicated that any expression may also occur as a statement.
Upon execution, the expression is evaluated and the result is discarded. So
only the side effects of the expression evaluation (e.g., the sending of a
message) are important.

Sequential composition, conditionals, and loops have the usual meaning.

A select statement is executed as follows: First, all the expressions (called
guards) in the guarded commands are evaluated from left to right. They
must all result in an object of class Boolean, otherwise an error occurs and
the system is halted immediately. The guarded commands of which the
guards have resulted in ff are discarded (they do not play a role in the
further execution of the statement). Now one of the remaining guarded
commands is chosen. For this there are two possibilities: One possibility is
that the (textually) first guarded command is chosen in which the answer
statement contains no method names (if there is such a guarded command).
In this case the statement after then is executed and the select statement
terminates. The second possibility is that a guarded command with a non-
empty answer set is chosen. For this the following requirements must be
satisfied:

— A message has arrived specifying a method in this answer set.
— This guarded command must be the (textually) first one that con-
tains this method in its answer set and for which the guard resulted in 7z.

— There must be no guarded command with an empty answer set
and a true guard occurring before this one.

If this case applies, the above message is answered (by executing th.e
specified method and returning the result), the statement after then is
executed, and then the select statement terminates.
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Guarded commands. These are sufficiently described in the treatment of
the select statement.

Units. These are the programs of POOL. A unit consists of a number
of bindings of class names to class definitions. If a unit is to be executed,
a single new instance of the /ast class defined in the unit is created and
execution of its body is started. This object has the task to start the whole
system, by creating new objects and putting them to work.

Class definitions. A class definition describes how instances of the
specified class behave. It indicates the methods and the body each instance
of the class will have. The set of instance variables is implicit here: it con-
sists of all the elements of IVar that occur in the methods or in the body.

Method definitions. A method definition describes a method. Here u,
through u, are the formal parameters and e is the expression to be
evaluated when the method is invoked. The set of temporary variables is
again implicit: it consists of all the elements of TVar that occur in the
expression e, with the exception of the formal parameters.

3.2.2. Context conditions

For a POOL program to be valid there are a few more conditions to be
satisfied. We assume in the semantic treatment that the underlying program
is valid. These context conditions are the following:

— All class names in a unit are different.
— All method names in a class definition are different.
— All parameters in a method definition are different.

Any POOL program that is a translation of a valid POOL-T program
will automatically satisfy these conditions. POOL-T is even more restric-
tive. For example, it requires that the type of every expression conforms
with its use, and it forbids assignments to formal parameters. However, the
conditions above are sufficient to ensure that the program will have a well-
defined semantics.

3.3. An Example Program

As an illustration of programs that can be written in POOL, we present
an example. In the following program (unit) U, a parallel implementation
of Eratosthenes’ sieve for generating prime numbers is given. An object of
the class Primes (the “root” object) generates an infinite ascending stream
of integers, which it feeds into a chain of instances of the class Sieve. Each
of those remembers in its variable p the first number it gets (always a
prime), and from the rest passes on only those numbers that are not
divisible by p. The computation proceeds in a pipelined way:
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FIGURE |

U = <Sievee=ds,ee, Primes<«=dpimes =

where
dseve = <(iNPUte=plnoy, Create=freme), Ssieve=>
with
Fopa = <(n), qe=n; self>,
tereme = <(), new(Sieve)>,
Ssieve = answer(input);
pP<q;
nexte-create();
do 1
then answer(input);
if q!mod(p)!equal(0)!not()
then nextlinput(q)
fi
od,
and
denmes = <0, Senmes ™.
with

Senmes = firste-new(Sieve);
le2;
do 1
then firstlinput(i); i«iladd(1)
od
(It is assumed that {p, q, next. i, first} C/Var and neTVar.)

4. DENOTATIONAL SEMANTICS

169

This section constitutes the heart of our paper. First, the sets of objects
and states are introduced and the mathematical domain P of processes is
defined which we use for our denotational semantics. Second, an auxiliary
semantic operator for parallel composition is defined, followed by the
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definition of environments. Then the semantics of expressions ang
statements is defined, with the use of the notion of continuations, some
familiarity with which may be helpful for the reader. (For an extensive
treatment of continuations and so-called expression continuations, which
we shall also use, we refer to Gordon, 1979.) Next, the semantics for the
standard objects (integers and booleans) of POOL is given. The section
culminates in the definition of the semantics of a unit (a POOL program),
This involves in particular the definition of the environment corresponding
to it. Finally, the notions of paths and yield of a process are introduced.

4.1. Domain Definitions

Before we can give the definition of our process domain we have to
define the sets of objects and the set of states.

DEFINITION 4.1. (Objects). We assume given a set A0bj of names for
active objects together with a function

7: AObj — CName,

which assigns to each object « € 40bj the class to which it belongs.
Furthermore, we assume a function

v: Z,(A0bj) x CName — AObj,

such that v(X,C)¢X and t(v(X,C))=C, for finite X< AObj and
Ce CName. The function v gives for a finite set X of object names and a
class name C a new name of class C, not in X. The set AObj and the set
of standard objects SObj together form the set Obj of object names, with
typical elements o and f:

Obj= AObj U SOb
=A0bjuZ U {11, ff} U {nil}.

Remark. A possible example of such a set 40bj and functions 7 and v
could be obtained by setting:

AObj= CName x N,
(G ny)=C,
v(X, C)=(C,max{n: {C,nye X} +1).
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DEFINITION 4.2. (States). The set of states X, with typical element o, is
defined by

¥ = (40bj - [Var - Obj)
x (AObj - TVar — Obj)

Remarks. (1) We denote the three components of ceZX by
0= <Ul’ 03 63>-

(2) The first and the second component of a state store the values of
the instance variables and the temporary variables of each active object.
The third component contains the object names currently in use. We need
it in order to give unique names to newly created objects.

In order to give a meaning to expressions, statements, and units we shall
define a mathematical domain P, the elements of which we shall from now
on call processes.

DEeFINITION 4.3 (Semantic process domain P). Let P, with typical
elements p and ¢, be a complete ultra-metric space satisfying the following
reflexive domain equation:

P={py}uid (X~ P(Stepp)),
where Step, with typical elements = and p, is

Step p= (2 x P)u Sendp L Answer p,
with
Send , = Obj x MName x Obj* x (Obj — P)x P,
Answer , = Obj x MName x (Obj* — (Obj - P) =" P).

Here Obj*, with typical elements & and f, is the set of finite sequences of
object names. (The sets {po}, =, Obj, MName, and Obj* become complete
ultra-metric spaces by supplying them with the discrete metric (see the
example preceding Definition 2.2).)

In Section 2 it is described how to solve such an equation. Let us try to
explain intuitively the intended interpretation of the domain P. First, we
observe that in the equation above the subexpression id, , is necessary only
to guarantee that the equation is solvable by defining a contracting functor
on the category % (see Section 2). For a, say, more operational under-
standing of the equation it does not matter.

643/83.2-4
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A process pe P is either p, or a function from X to #,(Stepp). The pro-
cess p, is the terminated process. For p #p,, the process p has the choice,
depending on the current state o, among the steps in the set p(g). If
plo) =, then no further action is possible, which is interpreted as abnor-
mal termination. For p(o) # (&, each step me p(o) consists of some action
(for instance, a change of the state ¢ or the registration of an attempt
at communication) and a resumption of this action, that is to say the
remaining actions to be taken after this action. There are three different
types of steps me Step,.

First, a step may be an element of 2 x P, say

n=<a’, p').

The only action is a change of state: ¢’ is the new state. Here the process
p' is the resumption, indicating the remaining actions process p can do.
(When p’' = p, no steps can be taken after this step x.)

Second, 7 might be a send step, m € Send . In this case we have, say

n={a,m B, [, p>,

with « e Obj, me MName, B e Obj*, fe (Obj— P), and pe P. The action
involved here consists of the registration of an attempt at communication,
in which a message is sent to the object a, specifying the method m,
together with the parameters f. This is the interpretation of the first three
components o, m, and f. The fourth component f, called the dependent
resumption of this send step, indicates the steps that will be taken after the
sender has received the result of the message. These actions will depend on
the result, which is modeled by f being a function that yields a process
when it is applied to an object name (the result of the message). The last
component p, called the independent resumption of this send step,
represents the steps to be taken after this send step that need not wait for
the result of the method execution.
Finally, = might be an element of Answer,, say

n=<_o, m, g

with « € Obj, me MName, and ge (Obj* — (0bj— P)—"'P). It is then
called an answer step. The first two components of © express that the object
o is willing to accept a message that specifies the method m. The last com-
ponent g, the resumption of this answer step, specifies what should happen
when an appropriate message actually arrives. The function g is then
applied to the parameters in this message and to the dependent resumption
of the sender (specified in its corresponding send step). It then delivers a
process which is the resumption of the sender and the receiver together,
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which is to be composed in parallel with the independent resumption of the
send step.

We now define a semantic operator for the parallel composition (or
merge) of two processes, for which we shall use the symbol ||. It is awxiliary

in the sense that it does not correspond to a syntactic operator in the
language POOL.

DEFINITION 4.4 (Parallel composition). Let
|:PxP—P

be such that it satisfies the equation
pllg=io-((xllg:nepo)nqlo)#B}uin] preqlo) n plo)# S}
v | {nl, p:neplo), peqlo)})

for all p,ge P\{p,}, and such that p,|g=q| po=p,. Here, n ﬂ g is
defined by

o>l g=<a, 'l 9,
Caym, B, fypy g=<osm B, fip |l 4.
Caym, g 1 g= <o m, A - 2h-(g(B)(h) || 4)),

and n|, p is defined by

(Ko, g(BUA) I pyY if m=La,mf, fp)and p={a,m, g
T, p= or p=<a,mp, f,pyandn=_a,m g>

[0%] otherwise.

Remarks. (1) We observe that this definition is self-referential, since
the merge operator occurs at the righthand side of the definition. For a
formal justification of this definition see the Appendix (A.l), where the
merge operator is given as the unique fixed point of a contraction
Do (PxP—>'"P)—>(PxP-'P)

(2) Since we intend to model parallel composition by interleaving,
the merge of two processes p and g consists of three parts. The first part
contains all possible first steps of p followed by the parallel composition of
their respective resumptions with g. The second part similarly contains the
first steps of g. The last part contains the communication steps that result
from two matching communication steps taken simultaneously by pro-
cesses p and ¢. For me Step» the definition of 7 || g is straightforward. The
definition of 7|, p is more involved. It is the empty set if 7 and p do not
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match. Now suppose they do match, say n=<{a,m,f, f, p> and
p={a,m, gy Then m is a send step, denoting a request to object o to
execute the method m, and p is an answer step, denoting that the object «
is willing to accept a message that requests the execution of the method m.
In 7|, p. the state ¢ remains unaltered. Since g, the third component of p,
represents the meaning of the execution of the method m, it needs the
parameters f that are specified by o. Moreover, g depends on the
dependent resumption f of the send step m. This explains why both § and
f are supplied as arguments to the function g. Now it can be seen that
g(BNf) || p represents the resumption of the sender and the receiver
together. In order to get more insight in this definition it is advisable to
return to it after having seen the definition of the semantics of an answer
statement.

(3) If, for a given state o, either p(o) or g(o) is empty, then (p || g)(o)
is the empty set. Since the empty set is used to model abnormal termina-
tion, this can be understood as follows: If abnormal termination occurs
in one of the two components of a parallel composition, then the entire
composition is considered to terminate abnormally.

(4) The merge operator is associative, which can easily be proved as
follows. Define

e= sup {dp((pl@)lr.pliglr)}

py.re P

Then, using the fact that the operator | satisfies the equation above, one
can show that £ <3¢ Therefore =0, and | is associative.
Next, environments are introduced.

DEFINITION 4.5 (Environments). The set of environments is defined as

Env=(AObj - P)x (MName — AObj - Obj* — (Obj — P)—' P).

Remarks. (1) We denote the first and the second component of y by 7,
and y,.

(2)  When we are going to compute the semantics of a certain unit U,
we shall define an environment y, such that it contains all information
about the definitions that are present in U. It will be needed in the com-
putation of the semantics of U. The first component y, of an environment
7 is a function that, supplied with an object name a, gives the process
representing the execution of «’s body. Note that this body depends on the
class of «, which can, however, be determined from the object name by
applying the function 7. We shall need this first component when we want
to define the semantics of a new-expression.



DENOTATIONAL SEMANTICS OF POOL 175

The second component y, gives the meaning of method executions and
is used to define the semantics of an answer statement, a method call, and
a select statement. When we supply y, with arguments m and « we get the
meaning of the execution of the method m by the object a. It depends on
the parameters that are passed to the method, so f is a third argument.
The final argument is the expression continuation f; which, applied to the
object resulting from the execution of the method, yields a process that
represents the steps to be taken next. The result y,(m)(«)(f)(f)eP is a
process expressing the meaning of the execution of the method m by the
object o with parameters f and expression continuation f.

4.2. Semantics of Statements and Expressions

In this section we define the semantics of statements by specifying a
function [---] ¢ of the type

[---1¢: Stat = Env— AObj — Contg—"' P,

where Contg= P, the set of continuations of statements. Let se Star,
y € Env, € AObj, and p € P. The semantic value of s is the process given by

EsTs(v)(2)(p).

The environment y contains information about class definitions (needed to
evaluate new-expressions) and method definitions (needed to evaluate
answer statements, select statements, and method calls). The second
parameter of [s]g, the object name «, represents the object that executes
the statement s. The semantic value of s finally depends on its so-called
continuation: the semantic value of everything that will happen after the
execution of s. The main advantage of the use of continuations is that it
enables us to describe the semantics of expressions, in particular the new-
expression, in a concise and elegant way. For that purpose, we shall specify
a function

[--1g: Exp— Env— AObj — CorztE—+l P,

where Cont = Obj — P, the set of expression continuations. Let e € Exp,
y e Env, oe AObj, and f e Obj— P. The semantic value of e is the process
given by

[el e (7)) ()).

The environment 7, the object a, and the continuatidn f serve the same pur-
pose as in the semantics of a statement s. However, there is one important
difference: the type of the continuation. The evaluation of expressions
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always results in a value (an element of Obj), upon which the continuation
of such an expression generally depends. The function f, when applied to
the result 8 of the expression, will yield the process f(f) that is to be
executed after the evaluation of the expression.

Remark. Please note the difference between the notions of resumption
and continuation. A resumption is a part of a semantic step me Stepp,
indicating the remaining steps to be taken after the current one (see the
explanation following Definition 4.3 above). A continuation is one of the
arguments that we give to our semantic functions. Such a continuation,
when supplied as an argument to [s] ¢(y)(«), for a statement s, an environ-
ment y, and an object «, indicates the actions that should be taken after the
statement s has been executed. It may appear as a resumption in the result.
A good example of this is the definition of [x < e] s (in Definition 4.7, S1)
below.

DEFINITION 4.6 (Semantics of expressions). We define a function
[-]g: Exp— Env— AObj — Cont, —"' P,
where
Cont .= Obj — P,
by the following clauses. Let y € Env, a € AObj, fe Obj — P.

(E1, instance variable)

X1 @)(f) = Ao - {<o, f(o1(x)(x)) > }.

The value of the instance variable x is looked up in the first component of
the state o supplied with the name « of the object that is evaluating the
expression. The continuation fis applied to the resulting value.

(E2, temporary variable)

[l e () @)(f) =10 - {0, fox(2)(u)) ) }.

(E3, send expression)

[elm(e,, ... e,)] £ (7)(0)(f) =
[e] x(y)(a)
AB - (Le ] g (y)(e)(
APy - ([e2] 2 (y)(a)(

lﬁnwl. '([en]]b(y)(a)(
lﬁ,,-/la-{(ﬂ,m, B’ﬁ p0>})) )))))
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where

B=CBrs s B
The expressions e, e, .., e, are evaluated from left to right. Their results
correspond to the formal parameters f, §,, .., B, of their respective con-

tinuations. Finally a send step is performed. The object name f refers to the
object to which the message is sent. The sequence {f,, .., B,) represents
the parameters for the execution of the method m. Besides these values and
the method name m the final step <, m, B, f, po> also contains the expres-
sion continuation f of the send expression as the dependent resumption. If
the attempt at communication succeeds, this continuation will be supplied
with the result of the method execution (see Section 4.1). The independent
resumption of this send step is initialized at p,,.

(E4, method call)

[[m(el’ [t} e")HL(Y)(a)(f):
e ] e (y)(a)
APy - (Leal £ (y)(e)(

'{‘Bn -1 ([[en]] 1;()’)(0‘)(
AB, - Aa - { (o, ya(m)(@)(B)S)D 1)) --+)))

where

B: {Bis o Bn>-

Here the final step is not a communication step. It represents the execution
of the method m by the object o with the parameters § and the continua-
tion f.

(ES, new-expression)

[new(C)] o(7)(@)(f) = 4a - {<a", 3:(B) I S(B)D

where

o' = <Ul{b"”ﬂ/ﬂ}a 05,030 {B}})s
ﬁ=V(O'3, C)~

A new object of class C is created. It is called v(a5, C): the function v, sup-
plied with the set of all object names currently in use and the class name
C as an argument yields a name of class C that is not yet being used. The
state o is changed by initializing the values of the instance variables of the
new object to nil and by expanding the set g3 with the new name B. The
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process 7,(f), representing the body of the new iject, is com;_)osed. in
paralle] with the process resulting from the appllgatlon of the continuation
f to S, which is the value of the evaluation of this new expression. We are
able to perform this parallel composition because we.know from f what
should happen after the evaluation of this new-expression, so here the use
of continuations is essential.
(E6, identity checking)
ler=ele())(f) = [e e (y)(a)(
ABy - Lex]l e () (a)(
Ay -if By =,
then f(11)
else f(/f)
fi)).

(E7, sequential composition)
[s3 el () o)(/) = [sDs(r)(@)(Le] £ (y)(@)(f)).

The definition of [---] is given below in Definition 4.7. Lemma 4.8 states
that [---], and [---]¢ are well defined, although their definitions refer to
each other.

(E8, self)
[self] . (y)(a)(f) = f(a).

The continuation f is supplied with the value of the expression self, that is
the name of the object executing this expression. We use f(«) instead of
46 -1<0, f(2))} in this definition, wishing to express that the value of self
is immediately present: it does not take a step to evaluate it. A similar
remark applies to Definition E9:

(E9, standard objects)
(8] () @)(f) = 1(4).
DEFINITION 4.7 (Semantics of statements). The function

[--1s: Stat > Env — AObj— Cont ¢ —' P,
where
Cont g = P,

is defined by the following clauses. Let V€ Env, a e AObj, pe P.

(S1, assignment to an instance variable)

[x—elst)@)(p) = Tel w(r)(@)AB - io - (o', pD>l,
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where

o' = (o {(o,(a){ BlxPat, 05,04
The expression e is evaluated and the result § is assigned to x.
(S2, assignment to a temporary variable)
L= el s)@)(p) = [el s () - - { (o', p})

where

6,': <Gl1 02{(02(a){ﬁ/u})/a}s 03>-

(S3, answer statement)

[answer V]s(y)(a)(p) =10 - {<x, m, g, > me V],

where for me V

g =B Obj* - If € Obj - Py, (m)(a)( B)AB-(f(B) Il p))

For each method m the function g,, represents its execution followed by its
continuation. In the definition of g,, the second component of environment
y is supplied with arguments m and «. This function g, expects parameters
f and a continuation f, both to be received from an object sending a
message specifying the method m. After the execution of the method both
the continuation of the sending object and the given continuation p are to
be executed in parallel. So the final argument 7y, is supplied with is

AB-(S(B) I p).

Remark. Now that we have defined the semantics of send expressions
and answer statements let us briefly return to the definition of =, p
(Definition 4.4). Let n = {a, m, B, f. ¢ (the result from the elaboration of
a send expression) and p = {«, m, g) (resulting from an answer statement).
Then 7|, p 1s defined as

e p=1{<a, g B q>}

We see that the execution of the method m proceeds in parallel with th-e
independent resumption ¢ of the sender. Now that we know how g is
defined we have

2B ) =72(m) ) BYAB - (S(B) I p))

The continuation of the execution of m is given by. AB-(f(B) I p), the
parallel composition of the continuations / and p. This represents the fact
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that after the rendezvous, during which the method is executed, the sender
and the receiver of the message can proceed in parallel again. (Of course,
the independent resumption ¢ may still be executing at this point.)
Moreover, the result 8 of the method execution is passed on to the

continuation f of the send expression.

(S4, expressions as statements)

Lels(y)(@)(p)=[e] (¥ )(@)(AB - p).

If an expression occurs as a statement, only its side effects are important.
The resulting value is neglected.

(S5, sequential composition)
L5120 s @)(p) = [s: T sy )52l (¥ ) () (p)).

The continuation of s, is the execution of s, followed by p. We observe that
a semantic operator for sequential composition is absent. The use of
continuations has made it superfluous.

(S6, conditional)

[if e then s, else s, fi] <(7)(a)(p) =
el s ) (AR - (if =1t
then [s, ] s(y)(2)(p)
elseif g = ff
then [s,] 5(y)(2)(p)
else Ao - &
fi)).

If B¢ {u, ff'}, then the result is io - -, indicating abnormal termination
due to the occurence of an error.

(87, loop statement)
[do e then s od] 4(y)(2)( p) = Fixed Point(®),
where @: P — P is defined by

P(q)=[el () @)(AB - Ao - {<a,if f=1tr
then [s]s(y)(«)(q)

elseif f = ff
then p

else 4o - @
fi)}).

We shall show below (Lemma 4.8(b)) that & is contracting.
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(S8, select statement)

[sel(e, answer V', thens,)or--- or(e, answer V, then s,) les] o(7)(2)(p) =
e ] e ()
By -if By ¢ {121, ff'} then Ao - &

else [ea] & (y)(o)(

AB,-if B¢ {11, ff} then do - &F
else Ao -

({<o, Isel s a)(p)d: Be=tt AV, =
AVi<k[B=tr=V,#J]}
U, m, g, D Be=1tt AmeV,
ANVIi<k[Bi=tt=(me¢V,AV.#Z)]})

fi--.)

fi),

where

Emi=Af € Obj* - If € Obj— P-yy(m)(@)( B)AB - (f(B) | [sls()()(p))):

The reader is entitled to some explanation. First the guards are evaluated
from left to right. If any of them evaluates to something different from ¢z
or ff, then an error occurs immediately, indicated by ic-J. After the
evaluation of the guards we have two sets of possible steps:

The first set is empty or contains a step corresponding with a guarded
command that has a true guard and an empty answer set, and for which
there does not occur any empty answer set to its left.

The second set contains those steps that result from the selection of a
method in one of those guarded commands that have a non-empty answer
set V,. A message specifying the method me V, can be answered if to the
left of the kth guarded command there occur no guarded commands with
an empty answer set nor with an answer set containing m. This expresses
exactly the priority order of the methods as explained in Section 3.2.1. The
function g,, , expresses the execution of the method m in the kth guarded
command. The only difference with the function g, used in the definition
of the answer statement (S3 above) is that the continuation of the receiving
object a (which executes the select statement s) in this case is:
[s.]s(7)(@)(p). It represents the execution of the statement s, of the kth
guarded command, followed by p, the continuation of the entire select
statement.

Note that a guarded command for which the guard evaluates to jj can
never be selected. If all guards in the select statement evaluate to ff. the
result is Ao - &, denoting abnormal termination.
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LEMMA 4.8. The semantic functions [---], and [---] ¢ of Definitions 4.6
and 4.7 are well defined:

(a) For all e€ Exp, s € Stat, y € Env, e AOb;:
lel s (7)) e (Obj > P)>' P and  [s]s(y)(x)e P ' P.

(b) The function ®: P — P used in Definition 4.7 (S7) is contracting.
For the proof see the Appendix (A.2).

4.3, Standard Objects

DEerINITION 4.9 (Integers). Let the process p;nr, which represents the
activity of all integer objects, be such that is satisfies the equation

pint=40-(1{(n,add, g} >neZ}u {{nsub, g, dneZ}u ),

where
g =ifeObj* if € Obj— P
(if Be Z then f(n+ f) | pinrelse o - & fi),

g =ifeObj* if e Obj— P-
(if Be Z then f(n—f) | pinrelse Ao - & fi),

and where the dots stand for similar terms representing the other opera-
tions on integers.

Remarks. (1) This definition is self-referential since p,nr occurs at the
right-hand side of the definition. Formally, p,yr can be defined as the fixed
point of a suitably defined contraction on P, similar to the definition of the
merge operator || as the fixed point of the contraction @, (see A.l in the
Appendix).

(2) We observe that p;yr is an infinitely branching process. Such a
process fits naturally into our domain. This is the reason why we have
chosen #,(---) (closed subsets) in our domain equation rather than
Zompl ---) (compact subsets).

(3) The operational intuition behind the definition of p,yy is the
following: For every neZ the set p,yr(0) contains, among others, two
elements, namely {n, add, g," ) and {n, sub, g, >. These steps indicate that
the integer object n is willing to execute its methods add and sub. If, for
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example, by evaluating nladd(n’), a certain active object sends a request to
integer object n to execute the method add with parameter »’, then gr,
supplied with " and the continuation f of the active object, is executed. We
have that g,"(n')(f) is, by definition, the parallel composition of f supplied
with the immediate result of the execution of the method add, namely
n+n’, and the process pyyr, which remains unaltered: g} (n')(f)=
f(n +n') || pint- If, by mistake, a request for the execution of the method
add arrives that specifies the wrong type or number of parameters, then
Ao - I is the result: the system deadlocks.

DEFINITION 4.10 (Booleans). Let the process pgoor. Which represents
the behaviour of the booleans ¢ and ff, be such that it satisfies the equa-
tion

PuooL=40-({<b,and, g; Y:be {t ff}}u{<{bor gy >be{t ff}}u
{<b,not, g,y be {1, ff}}),

where
gL =ABeObj*-if€eObj— P-
(if Be {11, ff'} then f(b A B) || Peoor €lse Ao - (F i)
gy =Afe Obj* . Af € Obj— P-
(if Be {1, ff } then f(b v B) | Proo else 40 - & fi)
g, =ABeObj*-if €O0bj—~ P-
(if f= ¢ ) then f(1b) | proor else 4o - & fi)

Remark. As with p;nr, the definition of pgoor is self-referential. It can
be formally justified along the lines of Remark (1) above. The intuition for
this definition is very similar to that of the definition of pinr (see
Remark (3) above).

DEFINITION 4.11 (Standard object nil). The process pi» representing
the behaviour of the standard object nil, is given by

praL =Ac - {<nil,m, AB-Af -da - B Hime MName}.

Remark. The process pyy, representing the behaviour of the object nil,
is willing to execute any method me MName. The execution of a metho.d
consist of immediate (abnormal) termination, indicated by 4o - (. 4In t.hlS
way, we model that sending messages to nil leads to abnormal termination
of the entire system.
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DEFINITION 4.12 (Standard objects). We define one process for all our
standard objects:

Pst=Pint | Poor || Pric

ExampLE. The standard objects are assumed to be present at the execu-
tion of every POOL statement s. Therefore the process representing the
semantic value of s will be put into parallel with pgr. An example may
illustrate how communication with a standard object proceeds. We deter-
mine

[x < (2ladd(3))]s(7)(2)(po) | Pst

for a given x € fvar, y € Env, and o€ AObj. First we compute the semantic
value of the assignment:

[x < (2ladd(3))] s(y)(2)(po)
= [2ladd(3)] ¢ (7 )(@)(f)
[where f=A8-4c"- {{a", py)} with
o" = oy {(ai(@){ B/x}/a}, a3, 05 ]
=20 ()AB: - ([B]e(WN)(ABy - Ao - {{ By, add, B, f, po > })))
=[BleN) (2B, 40+ {<2, add, By, f, po>})
=40-{<(2,add, 3, f, po)}.

Now the parallel composition:

40 (<2, add, 3, f, py> } || psr
=0-1<2,add, 3, f, poy} | 0" { -+, <2, add, g,>,--- } | pyoor. | prs
[where g,=1f€ Obj* . if € Obj— P-
(if fe Z then f(2+ f) | pynr else Ao - g 1i)]
=10-{<2, add, 3, f, po>|, <2, add, 227, 1l Proor | Prie

[where all steps have been omitted
but for the successful communication step ]
=40 - {{o, &:3)(/)), I Peoor | P
=40 {<0, f(5) || pint s 3 I Proor || Pric
=400, (26" {<0", po> }) || Pt} || Poor | Prae

where ¢” is as above but with f=5.
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4.4. Semantics of a Unit

4.5.1. Environments

If we want to define the semantics of a unit U we obviously need an
environment 7, that contains information about the class definitions

and the method definitions of U. It will be defined as the fixed point of a
contracting function.

DEFINITION 4.13. Let Env be the set of environments as defined in
Definition 4.5. Thus

Env=(A0bj— P)
x (MName — AObj — Obj* — (Obj —~ P) " P).
For every U e Unit, we define a function @: Env — Env. Let y€ Env, 7 =

<y1,72)- Now @ ,,(y), denoted by 7, is given as follows: First we determine

7,: Let e AObj and C=r(a). If U specifies a definition for the class C,
then we put

Fila) = [s]s(7)(@)(po),
where
U=<{.,C«=d .0, d={.,8);
otherwise,
Fil)=Aa- .
Now we define §,. Let me MName, a€ AObj, feObj*, feObj— P, and

put C=t(x). If U specifies a definition for C in which m occurs and
length( ) is equal to the number of formal parameters of m, then we put

Fom) @) (B f) =0 - {<a", [e] (¥)(@)(AB -2 - RGNV
where
U=<(..,C<=d ..},

d= oy (IS, ), s

lu= <(ul’ ety u,,),e),
o'=<0,,0;:{hfa}, 03
B= LBy Bads

h(u;)=pfori=1,..n,
h(u)=nll fOI‘ u¢ {ula anes un}’

¢'=(dy, 52{02(“)/“}’ G3)-
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Otherwise, we put

Tom) ()P Sf) =10 - .

Remark. 1If 7, is applied to an object name of which the class is not
defined in the unit U, then the empty process, Ao - (J, is the result, indi-
cating that an error has occurred. The same happens when 7, is supplied
with incorrect arguments. The definition of §, is straightforward. It
provides a process representing the body of the appropriate object. If 7, is
applied to a method m and object o, we get as a result the semantic value
of the expression e that is used in the definition u of m, preceded by a state
transformation in which the temporary variables of « are initialized. After
the execution of e these temporary variables are set back to their old values
again, and the continuation f is supplied with the resulting value of e.
(Here we use the fact that, although evaluation of a method by an object
might lead to a nested invocation, this always proceeds in a “last in, first
out” fashion.)

LemMA 4.14. Let Ue Unit and let @, be defined as in 4.13. Then @, is
a contraction.

For the proof see the Appendix (A.3).

DerINITION 4.15. Let Ue Unit, let @, be as in 4.13. We define
v = Fixed Point(® ).

4.5.2. Semantics of a Unit

The execution of a unit U with U={C,<=d,, .., C,,<=d,) consists of
the creation of an object of class C, and the execution of its body.

DEerFNITION 4.16 (Semantics of a unit). We define a function
Z: Unit > P
as follows: Let Ue Unit. Then
21Ul =pu | pst,
where

pu=[s]s(y o), C))po),
with
U={.,C,<={.,5)>,

and y,, as given in Definition 4.15.



DENOTATIONAL SEMANTICS OF POOL 187

Remark. The function [s] s is supplied with the environment y,,, which
contains information about the class and method definitions in U, the
name v(J, C,) of the first object, and with p,, denoting the empty con-
tinuation. The standard objects are represented by pgr. They are assumed
to be present at the execution of every unit U. Therefore they are composed
in parallel together with p,,.

4.5.3. Paths and Yield

The semantics of the statement x <« 1; x« x+ 1 executed by object a,
and with the continuation p, is

ho - {<a', A6 {{G", pod}> ),

where in ¢’ the value of a(a)(x) is set to 1, and in ' the value of a(x)(x)
is set to (a)(x)+ 1. This process consists of two successive state transfor-
mations that are not yet composed. The reason for this is that in our
semantics parallelism is modeled by interleaving. If, however, we know that
the statement above is the entire POOL program we want to consider,
then no further parallel composition, and thus no further interleaving, will
take place. Then we are able to compose the two state transformations into
one that accumulates their respective effects. For that purpose we introduce
the notion of paths. Given a process p, and a state ¢,, we want to consider
computation sequences starting from (o, p;).

DErFINITION 4.17 (Paths). A finite or infinite sequence ({o;, p,;»); with
og,€2, p;e P is called a path (starting from {o,, p,)) whenever
(@) Vjz1[j<length(({a; p;>)))=><0;, 1, Pj+1) €P;(0))]
(b) The sequence satisfies one of the following conditions:
(1) 1t is infinite. (This represents an infinite computation.)

(2) The sequence terminates with the pair <o,, p,>, where
p,=Do. (This represents normal termination of all the objects in the
system.)

(3) The sequence terminates with the pair (o, p,», where
p.(c,)= . (This represents abnormal termination.)

(4) The sequence terminates with the pair {o,,p,>, where
pa(0,) < Send , U Answer p. (This represents termination by deadlock.)

The set of all paths we shall call Path.

Remarks. (1) A path ({p,, 6;>), represents a particular execution of
the process p, starting from the state o,. In every component (g, p;»> of
a path starting in {o,, p,), the state o, is passed on to the resumption
process p,,.

643/83/2-5
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(2) In general a set p;(c;) may contain elements of Send, or
Answer », besides elements of X' x P. Since we consider paths of only those
processes that represent total (POOL) systems that are not expected to
communicate with any environment, we view such elements as unsuccesful
attempts at communication. Therefore we do not want to incorporate them
in our definition of paths. Note that if p;(¢;) contains only elements of
Send, and Answerp, then the path ends, and we have the termination by
deadlock of case (4) above.

(3) Note that for paths representing the execution of an entire unit
case (2) above never arises due to the fact that at least the standard objects
are always ready to answer messages. This means that “normal termina-
tion™ of a POOL program is an instance of case (4) above.

Next we define the function yield. It presents us, given a process p and
a state o, with the set of all possible paths that start from <o, p).

DeriNITION 4.18  (Yield). The function yield: P— X — 2(Path) is
defined as follows. Let pe P, e X. Then

vield(p)(o)={({a;, p;>);: ({a;, p;)),a path such that (o, p) =0, Pl

If we want to have all computation sequences of the denotational mean-
ing of a given unit U, we can apply this function yield to the semantics of
U as given in Definition 4.16:

yield( U] )oy).
The state g, we start with must be such that
o, =la-Ax-nil,
0,= Ao - Au - nil,
o;={wJ, C,)}

(where U= (..., C,<=d,>) in which all variables are initialized to nil, and
the set of objects names that are currently in use consists of the name of
the first active object.

S. FAIRNESS

We shall now introduce the notion of fairness. A path will be called fair
if it does nor represent a situation in which an object is infinitely often
enabled to take a step but never does so. To determine whether a path is
fair or not, for each step that occurs in the path we have to identify the
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object that takes it. It appears that the semantics of statements as we have
defined it offers too little information to make the desired identification.
Therefore a small adaptation of our semantic domain P, the merge
operator | and the semantic functions [---] and [---] is required. In our
new domain, which we shall still call P, we label every step with the name
of the object that takes it. We give the adapted equation that must be
satisfied and forget about the details of how to solve it.

DEFINITION 5.1. (Adapted domain P). Let P be such that it satisfies the
equation

P={py}vid (X~ P(Stepp))

where
Step p, = Comp p L Send p U Answer p,

Comp p= A x X x P (the set of computation steps),
Send p = 0bj x Obj x MName x Obj* x (Obj —» P) x P,
Answer , = Obj x MName x (Obj* — (Obj —» P) ="' P).
The set of labels A, with typical elements «, is defined by
A= 0bju (0Obj x Obj).

The set Answer p is as before, because answer steps were already labeled:
their first component indicates the object that is willing to answer the
method specified by the second component. The first component of a send
step denotes the object that is sending a message; the second indicates the
object to which this message is sent. The first component of a computation
step (i.e., an element of Comp,) is an element of A. It is either an object,
indicating the object that is taking an (internal) computation step, or it
is a pair of objects, indicating the two participants in a successful
communication step (see the definition of the merge operator below).

The definition of the merge operator has to be adapted to this new
definition of the domain P.

DEFINITION 5.2. Let ||: Px P — P be such that it satisfies, for p, g€ P,

if g=p,
if p=po

BTN

pllg= }.a-({nﬁﬂ g:mep(o) Aglo)# Tt v
{n| p:megla) n ploy# v

U {nl, p:me plo), peg(a)}) otherwise.
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For ne Step, we distinguish three cases:

i) (ko p>lg=<rosp o>
(i) <o pom B fp>lg=<aBom B, firllg>
(iil) <o, g) | g=<otm 2B 2h-(g(F)A) ] 9)).

Finally the set of successful communications between two processes is
defined as follows. Let =, p € Step,. We have

(o, B)o, g BYS) I p>y  if m=Lo, Bm B, f p>
and p=<{f, m, g>

ml,p= or p={a,p,m B, f, P>
andn =B, m, g>
%) otherwise.

The definition of a path (as given in Definition 4.17) has to be altered
straightforwardly: A path now contains triples <{«;, g;, p;>. Finally, the
definition of [---] and [---]¢ ought to be changed. We give one example
of a clause of the definition of [---],.

DeFINITION 5.3, Let [---] . and [---]¢ be as given in Definitions 4.6 and
4.7, but adapted straightforwardly as is illustrated by the following clause.
Let x€ AObj, y € Env, f € Obj — P. We define

[xI () () = 4o - {<a, 0, fa,(a)(x))}}.

As fairness is a negative constraint let us define which paths are to be
excluded.

DEfFINITION 5.4 (Unfairness). A path ({k;,0,, p,>), is called wunfair
whenever one of the following conditions holds:

() 3k 3ig=0Vn>i, [Ip I0[ <k, 0, pde p,(0,)] A K#K,, ]
(il) 3w 3<dp, iy, .. > 3B IM I,
[Vk20[1 <iy<ipy,]
ANYnzio 3f Ip[ <o, B,m, B, £, pY e pala,)]
ANYkZ13g[<{B.m, g>ep,lo,)]
AVR>iy [k, # <o, B5]]
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(ii1)  Fa Iig, iy, ..y Im,
[Vk20[1<ip<iyp,y]
AVnzig3g[a,m, grep,c,)]

A Vk> 1 Elﬁ aﬁafap[<ﬁa a, m’ ﬁ’f; P>5Pik(°'ik)]
AVa>iy 3Bk, = (B, ad]].

Remark. The unfairness of a path satisfying condition (i) is interesting
only when k€ Obj. Let k =a, for an object « € Obj. When condition (i) is
informally rephrased, it states that from a certain moment i, on, object a
is continuously willing to take a step (namely, <a, o, p)>, where ¢ and p
depend on the moment #) but in this path it never does so.

If a path satisfies condition (ii) it is unfair with respect to an object «
because this object is neglected in too rude a manner. It tries, from a cer-
tain moment i, on, to communicate with object f in order to have method
m executed. But although there are infinitely many moments i, at which
object f is willing to execute this method m our object « is never chosen
as a matching communication partner.

Condition (iii) concerns the academic case that an object o wants to
execute method m from moment i, on but never does so, although infinitely
many matching partners present themselves one after another. (They might
all be the same object.) Whenever the first component of a path results
from the evaluation of a POOL program, condition (iii) implies condition
(ii). For, once an object is willing to send a request to object « for the
execution of method m, it is unable to do anything else until o agrees to
the request.

DEFINITION 5.5 (Fairness). A path ({x;, 0, p;); is called fair if it is
not unfair.

We define a function fairyield, which presents us, given a process p, a
state ¢, and a label k, with the set of all possible fair paths that start from
(K, 0,p).

DEFINITION 5.6  (Fairyield). The function fairyield: P—>2— A~
#(Path) is defined as follows. Let pe P, o€ 2, k€ 4, then

/a”’)”dd(l’)(a)(’\')= {(<Ki’ Uia pi>)i: <K1a al’ P1>= <K’ a, p>
and (<{x,, 6,, p; ), 1s a fair path }.

(Formally, the choice of a label k is necessary, but of no importance for the
result of fairyield(p)(c)(x).)
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The fair computation sequences for a unit U are now given by
fairyield(Z[U])(o ) (@),

where Z[U] is as in Definition 4.16, g, is as defined at the end of Subsec-
tion 4.5.3, and « is an arbitrary label.

6. CONCLUSIONS

Now that we have given a semantics for the language POOL, it is time
to evaluate our efforts. The first thing to note is that we have succeeded in
giving a semantics that is really denotational: It constitutes a rigorously
defined mapping from the syntactically correct constructs of the language
to a mathematical domain suitable for expressing the behaviour of these
constructs. Furthermore, this mapping is defined in a compositional way,
in the sense that the semantics of a composite construct is defined in terms
of the semantics of its constituents. We think we have given a satisfactory
semantics to a parallel language with very powerful constructs: dynamic
process (object) creation (the new expression) and flexible communication
primitives (send, answer, and select).

The techniques we have used are quite general. We are confident that
they can also be used to give a denotational semantics to other parallel
languages, such as Ada or Occam.

Giving a denotational semantics to a language is an excellent way of
reviewing the language design itself. In doing this for POOL, a simplified
version of POOL-T, we have encountered no major semantic anomalies. A
minor point is the semantics of the select statement, which appears to be
overly complex and difficult to understand. In the design of POOL2, a new
member of the POOL family, we have decided not to change the basic
semantic primitives of the language, and to introduce only some syntactic
“sugar” to enhance its ease of use. The select statement, however, is omitted
and its functionality is obtained by the use of a conditional answer, which
accepts an appropriate message if there is any and otherwise continues
without waiting.

Let us now review some of the details of the present work: Why did we
use the metric framework instead of the more common order-theoretic
framework? We did this because it was possible. One should realize that
the main reason to use structured domains instead of plain sets is that we
want to be able to solve equations describing the required semantic objects
In a recursive way. An equivalent formulation is that we want to construct
fixed points of certain operations. Now the order-theoretic approach has
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turned out to be very valuable in the situation that the operations under
consideration may have many fixed points. Taking the /least fixed point of
a continuous operation on a complete partial order amounts to taking the
solution that makes the fewest arbitrary assumptions. In other words, it
takes the solution that is only defined insofar as it is defined explicitly by
the equation. In contrast, the metric approach is very useful if the equation
has only one solution. If the equation is characterized by a contracting
operation on a complete metric space, then this implies that the equation
has exactly one solution, and that this solution can be approximated by
repeatedly applying the corresponding operation, starting from an
arbitrary point. In a situation with unique fixed points, we think that the
metric approach is more appropriate because it makes this situation
manifest.

One could argue that our paper is not very concise, because we have to
justify our constructions with proofs that are sometimes very lengthy. But
if we compare this with the order-theoretic approach, we see that such
proofs are also required there. They are, however, frequently omitted. This
is justified on the one hand by the fact that order theory has become rather
standard, so that the reader can be assumed to be able to provide the
proofs himself, and, on the other hand, by the existence of very general
theorems stating that functions (or functors) constructed in certain ways
from certain basic building blocks are guaranteed to have fixed points. The
metric approach is not yet so well known, so we thought it advisable to
include the relevant proofs, but on the other hand, corresponding general
theorems about the existence of fixed points for large classes of functors
have been developed (see, for example, America and Rutten, 1988). A
remarkable point is that the mathematical techniques used to solve
reflexive domain equations, which in De Bakker and Zucker (1982) differed
greatly from the ones used in the order-theoretic approach, have again
converged to the latter in our work.

An important issue is the choice of the concrete mathematical domain in
which the meanings of our program fragments reside, the space P of
processes. It is certainly complex enough to accommodate all the different
constructs in the language. However, in certain respects it appears to be
too complex. For example, in the definition of fairness we had to deal
extensively with unrealistic situations, processes that could never turn up as
the meaning of a program. Intuitively it is clear that if we want to use a
single domain of processes to describe the semantics of different constructs
like expressions, statements, and units, then this domain cannot be made
simpler. So if we want simpler (smaller) domains, we shall have to use
different ones for different syntactic categories. Actually there are good
reasons for trying to develop another semantics with smaller domains:

First, the semantics given here does not provide a clear view of the basic
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concept of the language, the concept of an object. It would be nice to have
a semantics in which the objects appedr as building blocks of the system
and in which their fundamental properties, €.g., with respect to protection,
are already clear from the domain used for their semantics.

Second, there is the notion of full abstractness. A semantics is called fully
abstract if any two program fragments that behave the same in all possible
contexts are assigned equal semantic values. Intuitively speaking, a seman-
tics is fully abstract if it does not provide unnecessary details. This is cer-
tainly a pleasant property of a semantics. Now full abstractness assumes a
notion of observable behaviour of a program and in the language as we
have presented it, programs do not interact at all with the outside world.
Therefore such a notion of observability still has to be developed for
POOL. Nevertheless it seems extremely unlikely that for any reasonable
choice of observable behaviour a semantics along the lines of the current
paper will turn out to be fully abstract.

Another unsatisfactory point is the treatment of fairness. The way this is
defined here, by first generating all execution paths and then excluding the
unfair ones, has a definite non-compositional flavor. It would be much
more elegant if processes exhibiting unfair behaviour did not even arise in
the whole construction. The most important ingredient would be a fair
merge operator, merging two fair processes into one fair process. However,
in our framework such a fair merge is impossible because in some situa-
tions the resulting process would give rise to non-closed subsets of steps
(containing a whole Cauchy sequence, but not its limit). To solve this
problem we shall probably need a more general theory of fairness, if
possible in the metric framework.

A final point of further work to be done is the comparison of this
denotational semantics with the operational one given in (America et al.,
1986). An equivalence proof would, of course, be very desirable. For a
language that is only slightly simpler than POOL (instead of the rendez-
vous mechanism it uses simple value transmission) this has been achieved
in America and De Bakker (1988). The equivalence of the operational and
deg;galional semantics for the full language POOL is proved in Rutten
(1988).

APPENDIX

In Definition 4.4 we gave an equation for the merge operator |. Here we
show that there is exactly one operator in P x P —' P satisfying that equa-
tion. Let @i (PXxP—='P)s (PxP—' P) be defined as follows: For
OePxP—"'Pwe define @,..(0), which we denote by O, by
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'Og=Ao-({nOq:neplo) A qo) D} U (D p:neqla) A plo)# F)
v {zl, p: e plo), peg(a)))

or all p,ge P\{po}, and by poOg=4q O po=p,. Here, 1D q is defined
y

o', p'>Og=<o',p'Oq),
Co,m, B, f.p> Og=<Loam B, £, pOq),
Coym, > O q=Ca,m, AB-2h-(g(B)h) O q)),
and n|, p is defined by
(<o, BN Opy} if m=ClaumP, fp)andp=<amg)

T, p= orp={a,m B, f,pd>and t= o, m, g5
%) otherwise.

LEMMA A.l. (a) @ p is well defined, that is,
VOEPXP—'P[®,(O)ePxP—"'P],
(b)  @p is a contraction.
Proof. (a) @p is well defined: Let ©e Px P—"' P, we show

YP1s P2 d1s 42 € PLdp(p) O ¢15 P2 O ga) Smax{dp(py. p2) dp(q1. 42)} ],

where O =d,.(0O). .
Let p\, ps, 4., ¢, € P. We have (recall that P is an ultra-metric space)

dp(py O 1, p2 O g2) <max{dp(p, O g1, pr O ). dolpy O 42 P2 O 42
1t suffices to show that

(1) dp(p, 6‘1“ P 6‘12)<df’(‘]1s q1),
(2) dp(p, @‘h’ P2 @‘I2)<dp(l’1s p2)-

We treat only the first case, the second being symmgtric to it.
If one of p,q,,q, is equal to p,, the result is trivial, so suppose
P1>91.4,% py. Let ce X and let for i=1, 2,

X,={nOq, | nepio)rqla)# D)}
Y= {nOp | neqo)apilo)# D,

Z,=\J {nl, p:nepi(o), peqi(o)};
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S0 py () ¢,(c)=X,u Y,u Z,. Because ¢ is arbitrary, it suffices to show that

XY, 0Z, X,uY,0Z,)<dplq,, q5).

1
sd P Stepp i

The factor 1 is due to the occurrence of id,,, in the domain equation for P
(see Definition 4.3). We have

d oy sipp X1V Y1 OZ, X0 Y,07,)
< max{d/dlSu'Nl(Xl ’ XZ )’ d&“cl(Su'pP)( Yl ’ YZ )* d.-miSmpp)(Zl ’ Zz) }

This is a consequence of the fact that the union operator is NDI, which is
quite easy to prove. We show: d , ,p,(Z1: Z5) <2-dp(q,, q,). (The proofs
for X, and Y, are straightforward.) By the definition of the Hausdorff
distance we have

dyysipplZys Zy)=max{ sup {d(z,, Z,)}, sup {d(z,,Z,)} ).

€7y ez
We consider only the first supremum:

sup {d(z,, Z,)} = sup inf {dSle'pp(Zlazz)}-

ey el ez
Let -, e Z,. There are several possibilities:

I Suppose {z,}=<a,m, B, £ p> |, o, m, g, > with (o, m, f, f, p>e
pito), {x,m, g, >eq (o)

I(a) If there is a <a, m, g,) € ¢,(0), then we can take z,€Z, such
that

{:2} = <O(, m, Bafv P> ’a <a7 m, g2>

Then we have

ds,vm,(:,. :2)=d_v;,(.m,(<as gl(ﬁ)(f) O p>7 <Ua gZ(B-)(f) ®p>)
=dp(g1(B)S) O p. &2 A)S) O p)
S[sinceQePxP—'P]  d(g,, g,)

= dSu'pp(<a’ m, g, >’ <(Z, m, g2>)
Now for any ¢ >0 we can choose {a, m, g, € g,(c) such that
(!Slt'[)p( <O(, m, g, >a <CX, m, g, > ) < d:#‘d(Slepp)(ql(o-)’ 42(0)) te

<d; sasiepp (1> g2) + €

<2-dlg,,q,)+e¢.
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Therefore
dzy,Z,)<2-d(q,.q,)+¢
for arbitrary ¢, so
d(z,,Z,)<2-dq,, 95)
1(b) If there is no g, such that {x, m, g,) € q,(c), then
Ay sepm(d1(0)s g2(0)) Z d( o, m, g, ), ga(a))= 1.
Therefore,
dp1:42) 2 3 d pys0pl91(0). 42(0)) 2 5.
Now
d(z,, Zy)<1=2-dplq,, q,).
2. The second possibility is that {z,} = (a,m, g) |, {a, m, B. fi.p>s

with {a, m, g>e p,(a), a.m, B, f1, pY€q(a). This case can be treated
similarly to the first case.

From 1 and 2 we know that for arbitrary z, € Z,,

d(zy, Z7)<2-dplq1, q2).
Symmetrically, we have
Vz,eZy[d(zy, Z)) < 2-dplgy, 421
Therefore we can conclude

‘l.fcl(s:up,,)(zl L Zy)<2-dplgys 42).

(b) @, is a contraction. Let ;. O»€ P X P! P et
O, =% @ p(©;). We show that

dpxp P(®I s @2) < % d(O, O2)
We have

dppi f(O1. D)= sup 1dpe(pO1g, 0 O:2 )}

p.ye P
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Let p,ged — 2,(Stepp), 6 X. Let for i=1, 2,

Xi:der {néiq I nep(a)},
Yizdef {néip | 71651(0')}’
Z=%") {nl, p:ne p(o), peq(o)},
s0 p (D, q(a)=X,0 Y,u Z,. We have
d/_.us/epp»(Xl vY,uZ,X,uY,uZ,)
(Xl > Xz), d‘;od(smpf.)( Yl ’ Y2)’ d.J/d(Su'pp)(Zl > Z?.)}

ay |
< max{ “'mS/epp)

We consider d , ¢, (X . X5). By definition of the Hausdorff distance we
have

‘[,m(.su.,.,,,(XlsXz)—':max{ sup {d(m,, X,)}, sup {d(n2’Xl)}}'

e X e X2

Let m, € X,. We show

d(my, X;)= inf {dswp(nl,nz)}SdpxPuP(Q],@2)~

meX>

We treat one of the three possible cases for 7, € X, say m,=<a’, p' O, ¢,
where p’ e p(o):

inf {dg.p (<0’ p' O, ¢, 7))

me iy
S (', P O1 40, (0", p' ©14))
=ds. o0, p'©1 9>, {0, P’ Oy 4))
=dp(p' 014, p' O 9)
SdpupipOr, Oy)

Thus we have

sup {d(nl’ XZ)}gdPxP—»’P(@l, Os)

neX)

Similarly
sup {d(n,, X, )} Sdpupip(Of, O,)
me X,

So

d.yc|<5'1('pp)(X1 Xz) < dPx Pl P(@] » O2)-
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And analogously

A pysiepp (Y15 Y2) K dpy p ot p(O1, O)-
We have, according to the definition of Z,, that Z, = Z,. So

d“/u(Stepp)(p Ol q(c), p @z q(0)) = yd(wpp)(X vY,vZ,, X,uY,uZ,)
SdPxP—»‘P(@l’ @2)-
This holds for every ¢ € 2. Therefore
dp(p O1 4 P O29)=3ds . psiepm(P O1 6. P O29)
%dpxp—.lp(@la @2)

N

and thus

dPxP—»‘P(@]» éz)sédpxp-,l p(@n @2)-

LEMMA A2 (Lemma 4.8). For every expression e, statement s, environ-
ment vy, and active object o we have

(1) [els V)(OC)E(Obj—’P)-" P
(i) [s]s(yNa)eP-—>'P
(iii) VpeP[(D eP-'2p],

e.s. p

where @ : P — P is defined, for g€ P, by

es, p

¢u,.\‘, p(Q) = [e] «(
lﬁ /16 { <o, if p =1t then [s] s(7)(x)(q)
elseif § = ffthen p
else Ao - &
fi)})

Proof. We prove this lemma using induction on the complexity of the
structure of statements and expressions. The proof consists of two parts.
Let ye Env, o € AObj. We show

(a) For all simple (see below) expressions e and statements s we have
[e] x(7)(«) € (Obj » P) ="' Pand [s]s(y)(x)e P—"P.

(b) Suppose we have proved parts (i) and (ii) of the lemma for
statements s, and expressions e;. If s € Stat and e € Exp are composed of the
statements s; and expressions e; the lemma holds for e and s.
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Part (a). Simple expressions are of the form x, u, new(e), self, or ¢, the
only type of simple statement is of the form answer V. Let ¢ be a simple
expression. We have to show that

/1. fre (0bj = P)Ldp([el x(y) () (1), [el w()(o)(f2))
Sd()h/ - P(fl  f2) ]

Let f,, f-€ (Obj— P). For every simple expression e that is not a standard
object nor the expression self, we even have

dp([e] p (7)) f)) [e] (7)) (f2) < %d()bj—- P15 f2)

Intuitively the decrease of distance follows from the fact that the evaluation
of these expressions always takes at least one step. In this step the state
may be changed and the value of the expression is passed on to the con-
tinuation f,. This may be illustrated by the general form of the semantics
of such expressions e,

lel (N f)=Aa - { o', [ B) -+ >}

for some ¢'€ X, fe Obj. As an example let us treat one such type of expres-
sion. We show that [new(C)] . (y)(a) e (Obj— P)—>"' P:

dp([new(C)],(7)(2)(f1), [mew(C)] 4(y)()(f3))
=dp(4a- (" i (BYINLABYY b Ao - {<as 3 (B I fo(B)D))
=38P {1, (O, 1B 11 B) D, <oy (B) 112 B) D)}

oel

= % sup e (B) I f1(B), ()|l f2(B))} [because | is NDI]

ae X

< % sup {dl’(fl(/),)’ fz(/))))}

age X

< % d()hj - P(fl s /2 ).

Here ¢’ and f are as in Definition 4.6, part ES. For the standard objects
we have the following: Let ¢ € SObj, then

dp([P1 () 18] () ()(f2))
=dp(f1(9), f2(8))
Sdow— pl /15 12),

and analogously for self.
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For the only simple statement answer ¥, we have, for given processes
Pi» P2€ P,

p([answer V] o(7)()(p,), [answer V] s(7)(2)(p2))
=dp(Lo - {{a, m, g‘,,‘,’> meV}, io- {{a,m, g > meV}),

where for j=1,2 and me V,

g =Afe Obj* - if € (Obj — P) - yo(m)(@)(BYAB - (f(B) | p;))
The desired result is straightforward from

dope oo py - p(8Y, 22)  [because y,(m)(a)(f)e (Obj— P)—"' P]
< sup 'td()h/‘A-P BB po)s AB-(F(B) I p2))}

/e (Obj — P)

=sup {dp(p | pi» pll )} [because || is DNI]

peP

<dp(pys pa)

Part (b). Composite expressions are of the form elm(e,..,e,),
mley, .., e,), e, =e,, or s;e. Composite statements are of the form x < e,
uee, e s;s,, if e then s, else s, fi, do ¢ then 5 od or sel g, or---or g, les.
Suppose that we have proved parts (i) and (ii) of the lemma for expressions
¢, ey, ..,e,e€Exp and for se Star. We shall treat one composite expression
and one composite statement. We show that [elm(e,, ...,e,)] z(y)(2) e
(Obj— P)—>' P. Let f,, f,e (0Obj— P). We have

dp([etmiey, ..., e, )] (W) f1), [elmley, ..., €,)] 1 (2)(2)(f2))

=dP([[€:['E(y O()()O' 1 <ﬁ’ m, Bn/l, P0>}' ),
el s ()@~ da - {{Bom, B, frs pod}--+))
[by the induction hypothesis for e]
Sd(--da - {{B.m, B, fr, pod} oo da - {{Bom, By fay pod ) ---)
[by the induction hypotheses for ¢, ..., ¢,
<dp(}~0' : { <Bs m, /}a _f.l’ p()> }» /{O’ " { <ﬂv m, ﬁv va p0> })

< % dopj— p(f14 12).

The most interesting example of a composite statement is the do statement.
We have that

[do e then s od](y) (o) e P —»' P
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by the following argument, which at the same time proves part (iii) of the

lemma.
First, we show that

VpeP[®,,,eP>"*P].

Let ¢,, g.e P. We have

dpe(P, p(q1), Do p(q2))
=dp(lele(@)@)AB gy - ), [l () )AB -~ g, ---))
[by the induction hypothesis for e]
oy pAB- 20+ qy -}, 2o { gy )
<3 dpl[s]s(r) (@) (g0 )s [sTs(y)(2)(g2))
[by the induction hypothesis for 5]
<3d4q1. 45).

Second, let p,, p,e P. We define

g, — def Fixed POint(¢e.s,m)’
7, =9l Fixed Point(®,

es, ;2 )

We have

dp([do e then 5 0d] 4(7)(2)(p,), [do e then s od] (7)(x)(p,))
= [by definition] d,(q,, ¢,)

= dP(¢£‘.,\‘.p1(ql )* ¢e,.v. pz(qZ))
[by the same kind of calculation as above,

using the induction hypothesis for e]

<3 maX{dP([[s]]S(y)(a)(ql), [sTs(y)(@)(g2)), dp(py, ps)}
[using the induction hypothesis for s]

<3 max{dplq,, q,), dp(pi, ps)}.
We see

dp(qy, q3) < % dp(py, ps).
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Lemma A3 (Lemma 4.14). Let for a unit Ue Unit @, be defined as in
Definition 4.13. Then @, is a contraction.

Proof. We shall show

V'yﬂ 5 € Env[dl:'mv(?a g) < % dEnu(y’ 6)]»

where 7=, (y), 8 = @, (), by proving for y, € Env the two inequalities:
(a) dEnr]((’;;)lﬁ (5’)1)< %dlfnv('y’ (5)
(b) db'nvz((')’;)?.’ (5-)2) < % dEnv(?’ é )

We have

dl;'nm((?)] 5 (5)1)

sup {dp((7),(a), (g)l(“))}
ae AObj
< sup

. {dp([sTs(y)(a)(po)s [[S]]S(é)(“)(l’o))}-
se Stat,x € AObj

Now it is easy to prove (in the same way as in Lemma 4.8) that, for every
se Stat and e € Exp,

[sTs€ Env—"2(A0bj— P —" P),
el ,€ Env = (AObj — (Obj — P) —' P).
Intuitively this can be explained by the fact that whenever the environment

occurs in the semantic equations (the cases E4, ES, S3, and S8), it is
“guarded” by Ao - {--->. From this observation it follows that

sup A dp(IsTs()(@)(po)s [sT5(8)(@)(po))} <3 iy 6
s€ Stat,xe AObj

which concludes the proof of part (a).

The proof of part (b) is similar to that of part (a) and therefore we omit
it.
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